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Tungsten-Oxo Alkylidene Complexes 
as Olefin Metathesis Catalysts and the 
Crystal Structure of W(OXCHCMe3)(PEt3)Cl2

1 

Sir: 

For some time we have been trying to prepare molybdenum-
or tungsten-alkylidene complexes which are isoelectronic with 
known niobium or tantalum alkylidene complexes.23 Since a 
direct approach so far has yielded only one, rather esoteric 
type,2b we turned to indirect routes. The first successful reac­
tion of this type is shown in eq 1.3 Analogous benzylidene (lb), 

Ta(CHCMe3XPEt3J2CIj + W(OXOCMe3I4 

PEt3 

^ Tc(OCMe314CI + ^ W | 0 ( I ) 

PEt3 

la 

ethylidene (Ic), propylidene (Id), and methylene (Ie) com­
plexes were prepared by treating la with RCH=CFh (R = 
Ph, Me, Et, H) in the presence of a trace of AICI3.5 We report 
here that these oxo alkylidene complexes are catalysts for the 
metathesis of terminal and internal olefins and describe the 
isolation and crystal structure of a //w-coordinate, active 
metathesis catalyst, W(O)(CHCMe3)(PEt3)Cl2. 

W(0)(CHCMe3)(PEt3)202 in benzene in the presence of 
~0.5 equiv OfAlCl3

6 in 1-2 h reacts with 1-butene to give 
3,3-dimethyl-l-butene (0.95+ equiv), but no 2,2-dimethyl-
3-hexenes (the other possible type of metathesis product) or 
olefin products of /3 elimination from a metallacyclobutane 
intermediate.7 The solution also contains 1-2 equiv of 3-hex-
ene(s) (geometry undetermined) and some ethylene (most is 
in the gas phase). The solution was filtered at this point and 
the contents were examined by 1H, 13C, and 31P NMR in 
C6D6. We showed an organometallic product of type 1 to be 
present in ~55% yield (by 1H NMR integration vs a toluene 
standard); it was a mixture of Id (~80%) and Ie (~20%).8 

Since 3,3-dimethyl-1 -butene is the only product of the initial 
reaction between la and 1-butene, Ie must form in a subse­
quent reaction of Id with 1-butene. This suggests that for­
mation and metathesis of 2a is faster than formation and me­
tathesis of 3a. Presumably, the same is true of 2b vs. 3b.9 

CMes Et CMe8 Et 

M^> M^> M^-Et M^>Et 

Et Et 

2a 2b 3a 3b 

A reaction identical with the above continues to produce 
ethylene (which is vented every few hours) and 3-hexenes. 
After 24 h ~17 equiv of 3-hexenes are found. 

W(0)(CHCMe3)(PEt3)2Cl2 in chlorobenzene in the pres­
ence of ~0.5 equiv OfAlCl3 reacts with m-2-pentene to give 
the two initial metathesis products shown in eq 2 in 2 h, Ic and 
Id in a ratio of ~1:1, and 2-butenes (~70% trans) and3-hex-

find, in the Hartree-Fock (HF) approximation, barrier heights of 17.4 and 
20.0 kcal/mol for the addition of H - to C2H2 and C2H4, respectively. These 
results are much larger than the HF values of 3.2 and 1.9 kcal/mol reported 
in ref 21, but rather close to their 3 X 3 Cl values of 16.7 and 16.6 kcal/mol. 
For a more complete study of the H - + C2H2 reaction, cf. C. E. Dykstra, 
A. J. Arduengo, and T. Fukumaga, J. Am. Chem. Soc, 100, 6007 
(1979). 

(24) For an ab initio rate study of the H + C2H4 reaction, cf. S. Nagase, T. Fueno, 
and K. Morokuma, J. Am. Chem. Soc, 101, 5849 (1979). 

enes steadily over the next 24 h. The total number of turnovers 
in 24 h is ~50. 

I a + m-MeCH=CHEt 

—>• (0.22)/rarts-Me3CCH=CHMe3 

+ (0.13) trans-MeCCH=CHEt + Ic + Id (2) 
The metathesis reactions (especially of 2-pentene) proceed 

more slowly in benzene than they do in chlorobenzene. IfAl-
EtCl2 is used instead of AlCl3, 1-hexene is metathesized at 
about the same rate for the first 12 h (as is observed with 
AlCl3), but then 2-butene forms (probably via a nonmetathesis 
related isomerization pathway) and all possible metathesis 
products are produced. Other Lewis acids such as TaCIs, 
SnCh, ZrCU, or SbCIs also are successful cocatalysts. In all 
reactions the catalytic activity slows considerably with time 
and eventually no oxo alkylidene complexes of type 1 can be 
recovered from or observed in the mixture. 

In other studies10 we postulate that an octahedral coordi­
nation site must be present on tantalum for an olefin to react 
with the alkylidene ligand. The following results suggest that 
this is true here as well. Halides exchange readily between W 
and Al; when 1 equiv of AlBr3 is added to la in benzene, 
W(0)(CHCMe3)(PEt3)2Br2 is formed essentially quantita­
tively in a few minutes, according to the 31P NMR spectrum 
of the filtered mixture." We also know that, in the absence of 
a Lewis acid, complexes of type 1 react very slowly with olefins 
and not at all in the presence of added PEt3. Unfortunately, 
these results do not tell us whether loss of halide, loss of PEt3, 
or loss of both yields a metathesis catalyst. 

We can remove one PEt3 ligand by adding transition metal 
complexes which will scavenge phosphine. One of the most 
successful experiments is shown in eq 3. Interestingly, 4 will 
metathesize terminal and internal olefins in chlorobenzene 

la + 0.5Pd(PhCN)2Cl2 - ^ U -
toluene 

0.5Pd(PEt3)2Cl2 + W(O)(CHCMe3)(PEt3)Cl2
12 (3) 

4 
in the absence of AlCh at an initial rate which is at least equal 

rto that of 1 plus AlCl3, but the system is shorter lived. There­
fore 4 is at least a plausible active intermediate in the system 
1 plus AlCl3. 

W(O)(CHCMe3)(PEt3)Cl2 crystallizes in the centrosym-
metric orthorhombic space group Pbca with a = 9.111 (2), b 
= 15.709 (4), c = 24.207 (6) A; V = 3465 (1) A3 and p(calcd) 
= 1.76 g cm - 3 for mol wt 459.0; and Z=S. Diffraction data 
were collected with a Syntex P2i automated four-circle dif-
fractometer using a coupled 0(crystal)-20(counter) scan 
technique13 and graphite-monochromatized Mo Ka radiation. 
Data were corrected for absorption (ju = 74.3 cm-1) and the 
structure was solved by a combination of Patterson, differ­
ence-Fourier, and full-matrix least-squares refinement tech­
niques. All nonhydrogen atoms were located. The tungsten 
atom lies in a pseudo special position (~l/2, ~ l / 2 , ~l /8) and 
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W - C ( D - c ( 2 ) > w o s f l i r 

P - W - C K 2 ) = 163.4(2)' 

C( I ) -W-O = I06.7(6f 

CI(I)-W-O - 135.9(4)* 

W"C(I) • 1.882(14) & 

W"0 • 1.6GI(II)* 

C 3 

Figure I.ORTEP drawing of the structure of W(O)(CHCMe3)(PEt3)Cl2 
showing all nonhydrogen atoms. 

half of the data is systematically weak. Discrepancy indices 
are RF =0.147 and RwF = 0.068 for all 3055 reflections and 
RF = 0.082 and RwF = 0.060 for those 1769 reflections with 
l̂ obsdl >3<r[|Fobsd|]. 

The molecular geometry is shown in Figure 1. The molecule 
is a distorted trigonal bipyramid in which the oxo ligand, Ca 
and Cjj of the neopentylidene ligand, and the chloride ligand 
all lie in the equatorial plane [W=C(I) = 1.882 (14), W = O 
= 1.661 (11), and W-Cl ( I ) = 2.389 (5) A]. The triethyl-
phosphine ligand and the second chloride ligand occupy the 
"axial" sites [ W - P = 2.518 (4), W—Cl(2) = 2.379 (5) A]. 
Although many features of this molecule are worth some dis­
cussion we want to comment on only two of them here. The first 
is the W=C(I) bond length; it is intermediate between the 
tungsten-alkylidene and tungsten-alkylidyne bond lengths 
found in Wt=CCMe3X=CHCMe3)(CH2CMe3XdITiPe) 
[ W = C = 1.942(9), W = C = 1.785(8) A].14 The second is 
the W=C(I ) -C(2) angle [140.6 (H)0] ; it is the smallest of 
any observed so far in several neopentylidene complexes of 
T a 4 c , 1 5 , 1 6 a n d W 1 4 

We conclude from these studies that alkylidene ligand 
conformations are more "normal" in electron-deficient17 Ta 
or W complexes which contain "hard" alkoxide18 or oxo li­
gands, respectively. These complexes are metathesis catalysts.3 

When only "softer" ligands are present (TJ^CSRS, Cl, Br, 
PR3)19 and/or when such Ta-alkylidene complexes are for­
mally reduced by two electrons,20 the alkylidene ligand is 
distorted such that the M—Ca—Cp angle is 160-170°. These 
"reduced" alkylidene complexes do not metathesize olefins.3-19 

We have shown23'10-21 that, in these cases, the initial metal-
lacyclobutane complex rearranges to an olefin complex too 
rapidly relative to the rate at which it cleaves to form a new 
alkylidene complex. 
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Intermolecular Reactions of 
4,4-Dimethylcyclohex-2-enylidene1 

Sir; 

In an important paper describing intramolecular insertion 
reactions of alkylcarbenes, Chang and Shechter3 made the 
suggestion that excited singlet carbenes could be responsible 
for much of the chemistry occurring on direct irradiation of 

0002-7863/80/1502-4516S01.00/0 © 1980 American Chemical Society 


